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A simple axisymmetric extension to virtual cell embedding
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SUMMARY

Virtual cell embedding (VCE) is a simple cartesian gridding method that subdivides cells into discrete
subcells to obtain the approximate obstructed cell area and side lengths. It can be used to make a very
fast calculation method for the Euler equations in two dimensions. However, the original procedure for
two spatial dimensions is inadequate for axisymmetric geometries, where radial co-ordinates of cells and
interfaces need to be known. Presented in this paper is a short, simple extension of the VCE method
to handle axisymmetric cases with an accuracy consistent with the basic VCE surface representation in
planar geometries. The method will be tested in basic conical flow simulations to show its usefulness for
practical engineering design purposes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. BASIC VCE METHODOLOGY

A good description of the virtual cell embedding (VCE) method has been given by Landsberg
et al. [1] and Landsberg and Boris [2] so a brief introduction to the basic VCE method in two
spatial dimensions will be given here. First, as in Figure 1(a) the cell is subdivided into a lattice of
discrete ‘subcells’. Each subcell is tested if it is obstructed by a body. This way the approximate
obstructed area and side lengths (or interfaces) can be determined.

The surface cutting through the cell is approximated as a single straight wall using the obstructed
side lengths, as seen in the example in Figure 1(b). In this example, the net obstructed length
along the x-axis lx is found by lx = lxr − lx l, and similarly for ly . Then the average wall surface
normal navg is

navg =∑
i
n̂i li , i = x, y (1)
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Figure 1. VCE methodology.

where n̂i is the unit vector along the axis i . The corresponding wall surface length lavg is

lavg = ‖navg‖ (2)

2. AXISYMMETRIC EXTENSION

The axisymmetric Euler equations in the integral form are

�
�t

∫
A
U dA +

∫
l
rF · n̂ dl =

∫
V
Q dA (3)

U is the vector of conserved quantities U= [�, �u, �v, �E]T, F the vector of fluxes, t the time
dimension, � the density, u and v are velocity components in the x and y, directions, respectively,
and E is the total energy per mass E = e + �(u2 + v2)/2, n̂ is the outward unit normal on the
surface l which bounds the control volume A.

If the x-axis is the symmetry axis and y-axis the radial axis, then r is the radial co-ordinate at
an interface and Q=[0, 0, p/r, 0]T where p is the pressure in the cell. Additionally A becomes
the volume per radian. The cell-centred finite volume discretization of Equation (3) is given by

dUc

dt
= − 1

Ac

∑
if
rifFif · n̂iflif + Q (4)

where the subscript ‘if’ stands for interface, Ac is the cell volume, and Uc is the cell-centred state
vector. The volume per radian Ac = Arc, where A is the cell area and rc the cell’s average radial
co-ordinate.

It can be seen that the base VCE scheme is only suitable for planar flow as the axisymmetric
equations require additional information—the radial co-ordinates of the cell centre rc and its fluid
interfaces, i.e. the unobstructed side lengths rl and wall surface rw. How these quantities can be
found is discussed below.
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2.1. Obtaining cell-centre and interface radial co-ordinates

The VCE subcell division can be used to calculate rc (the cell’s average radial co-ordinate) and
rl (the average radial co-ordinate of its unobstructed interfaces) if the radial co-ordinates of each
subcell are stored and then averaged in the summation, i.e. rc/l = ∑

N rsc/l/N , where rs is the radial
co-ordinate of a subcell, and N the total number of fluid subcells, i.e. unobstructed subcells.

2.2. Obtaining the wall radial co-ordinate

The wall radial co-ordinate rw can be found by taking advantage of the fact that VCE always
gives straight surface representations. With the help of Figure 1(b), first shift the origin to the
lower left cell corner, and assume the cell is square of length lc. In a similar manner to finding
rl now the average obstructed radial co-ordinates on the east and west faces rxr and rx l, respec-
tively, are found. Now consider two cases: (1) when the surface normal is pointing downward or
sideways (i.e. its radial co-ordinate is negative or zero respectively); and (2) when it is pointing
upward.

1. Downward or sideways surface normal: With the help of Figure 2(a), note that rxr and rx l
represent the midpoint of obstruction on a side, so that very simply rw = rxr + rx l.

2. Upward surface normal: With the help of Figure 2(b), this case can also been seen as case (1)
if the origin is shifted to the top right cell corner and the transformation r ′ = lc−r is applied.
However, if either rxr or rx l are 0, then likewise r ′

xr or r
′
x l, respectively, are 0 (as a zero value

means that no obstruction is present). Then r ′
w = r ′

xr + r ′
x l, and finally transforming back,

rw = lc − r ′
w.

Thus

r ′
x(l/r) =

{
0 when rx(l/r) = 0

lc − rx(l/r) when rx(l/r)>0

Then rw = lc − (r ′
xr + r ′

x l).
It should be noted from Figures 2(a) and (b) that it is equally possible to use the average

unobstructed radial co-ordinates r̃xr and r̃x l instead of rxr and rx l.

Figure 2. Two surface normal configurations: (a) downward surface normal
and (b) upward surface normal.
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3. NUMERICAL RESULTS

Although Landsberg and Boris [2] has done a two-dimensional VCE accuracy study with an airfoil
geometry and demonstrated that VCE can produce good results, here simple supersonic conical
flow is investigated. This is also an important test case as: (i) VCE computes approximated surfaces
that might be slightly oriented into or away from the flow—a numerical equivalent of ‘surface
roughening’; and (ii) conical flow solutions can be easily computed, e.g. using the method of
Taylor and Maccoll [3], giving easy comparisons (in the steady-state limit, constant property lines
are generators from the cone vertex).

In all the simulations below the half cone angle is 20◦ and a uniform cartesian grid is used
with the area ratio of a cell to the triangle (representing the cone) being roughly 1.5 × 10−4. The
axisymmetric Euler equations (Equation (4)) were solved with an explicit two-stage Runge–Kutta
method using the standard MUSCL technique [4] and a minmod limiter [5]. The flux solver used is
the AUSMDV [6]. An ideal gas is used with ratio of specific heats � = 1.4. As with most classical
cartesian cell methods, cells with very small volume fractions (say below 10% of their basis areas)
are merged with larger neighbouring cells to prevent excessively small timesteps.

3.1. Steady-state conical flow

The steady-state flow over the cone (M∞ = 2.5) is considered here. This test case incorporates a
subcell refinement study where the number of subcells (for both the area and side lengths) used are
32, 64, 128, and 256. Some density contours for the conical flow for various subcell resolutions
can be seen in Figure 3.

Figure 3. Density contours: (a) cone (32 subcells); (b) cone (64 subcells); and (c) cone (128 subcells).
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Note that when 32 subcells are used (Figure 3(a)) it can be observed that the surface roughness
arising from a non-exact surface representation gives rise to oscillations, or ‘noise’ at the surface.
However, the global flowfield is not too bad with the computed shock angle aligning with the exact
angle (the black line) quite well.

When the number of subcells is increased to 64, the noise is reduced for the same number of
contours (Figure 3(b)). By going further and using 128 subcells (Figure 3(c)), the solution exhibits
even less surface noise, giving quite smooth contours. In all these examples the calculated shock
angles agree very well with the exact angles. These results seem to indicate the correctness of the
current VCE axisymmetric formulation and they also give the expected trend of increased solution
accuracy (or decreased solution noise) for higher subcell resolutions.

The effect of the surface noise can be quantified in terms of a relative error if one compares
the maximum deviation (along the cone surface) of density or pressure values from the theoretical
result, i.e. �= |q − qtheory|max/qtheory. However, the portion of the cone surface near the vertex is
excluded from this measurement due to the numerical ‘smearing’ of the shock over a few cells.

It is also interesting to see what errors arise from evaluating the integrated force (per radian)
along the cone surface, since the oscillating noise on the surface may to some extent ‘cancel’ the
errors occurring from too high or too low pressure values. These errors are plotted in Figure 4
versus 1/N where N is the number of subcells. Curve fits for the pressure and density errors have
also been attempted based on the equation A + Bx p, with x = 1/N and p thus representing a
‘convergence order’ for subcell resolutions based on the error.

It can be seen that the errors for the pressure and density values do decrease for higher sub-
cell resolutions, although it appears that the solution error will not decrease to zero as subcell
resolution increases. Obviously, the error also depends on the actual mesh resolution (as is the
fact that for the same resolution a body-fitted grid would undoubtedly produce a more accurate

Figure 4. Noise errors.
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Figure 5. Density contours.

solution). The convergence orders for the pressure and density errors are 1.55 and 2.43, respec-
tively, which is encouraging given that the underlying flow solver also has greater than first-order
accuracy.

It is interesting that the integrated force error stays roughly constant with subcell resolution. This
demonstrates that despite greater noise at lower resolutions, some cancellation between positive
and negative amplitudes does in fact occur, leaving quite a small error at about 1% (which is
probably expected with this mesh resolution and cartesian method).

3.2. Unsteady conical flow

The transient flow of aMach 3.66 shock (with post-shock M∞ = 1.5) over the cone is simulated. The
number of area and side length subcells used is 64. Figure 5(a) shows the density contours before
the shock has exited the domain. Some surface noise is present, but nonetheless the reflected shock,
Mach stem and contact discontinuity are captured quite well. In the steady-state limit (Figure 5(b))
the result resembles the solutions in Figure 3(a). Apart from the surface noise, the general solution
is not too bad with the computed shock angle again agreeing very well with the theoretical result
(the black line).

4. CONCLUSION

This paper has presented an extension to the VCEmethod to handle axisymmetric flows. It only uses
information already obtainable from the underlying VCE methodology, and thus has an accuracy
consistent with and limited by the basic VCE paradigm. The produced solutions were generally
good, although the expected surface noise from the approximated VCE surface representation
was observed. However, this axisymmetric VCE extension (and the VCE method in general) can
still give quite satisfactory results when very high-resolution solutions are not required, e.g. for
practical engineering design purposes (say where one only needs integrated pressure forces).
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